login
A166951
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
1
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520586, 414272545725720, 4556998002975000, 50126978032637880, 551396758358058360
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
FORMULA
G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
MATHEMATICA
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 29 2016 *)
CROSSREFS
Sequence in context: A165807 A166372 A166557 * A167113 A167665 A167916
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved