login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166741 E.g.f.: exp(2*arcsin(x)). 3
1, 2, 4, 10, 32, 130, 640, 3770, 25600, 199810, 1740800, 16983850, 181043200, 2122981250, 26794393600, 367275756250, 5358878720000, 84106148181250, 1393308467200000, 24643101417106250, 457005177241600000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

exp(2*arcsin(1)) is Aleksandr Gelfond's constant.

LINKS

Table of n, a(n) for n=0..20.

Wikipedia, Gelfond's constant

FORMULA

a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014

From Vaclav Kotesovec, Nov 06 2014: (Start)

a(n) = (n^2 - 4*n + 8)*a(n-2).

a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.

(End)

MAPLE

seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014

MATHEMATICA

CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)

FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi, {n, 0, 20}]] (* Vaclav Kotesovec, Nov 06 2014 *)

PROG

(PARI) for (n=0, 25, print(polcoeff(exp(2*asin(x)), n)*n!, ", "))

CROSSREFS

Cf. A006228, A039661, A166748.

Sequence in context: A121277 A009284 A105557 * A054091 A056593 A154219

Adjacent sequences:  A166738 A166739 A166740 * A166742 A166743 A166744

KEYWORD

nonn

AUTHOR

Jaume Oliver Lafont, Oct 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 17:45 EDT 2020. Contains 337444 sequences. (Running on oeis4.)