This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166696 A transform of A103210. 2
 1, 3, 21, 162, 1365, 12219, 114156, 1100649, 10871175, 109438830, 1118798079, 11583712617, 121219182504, 1280065637487, 13623341795049, 145977237305874, 1573536198376401, 17051418418204671, 185646639499541892 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums are A166697. LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 FORMULA G.f.: (1-3x+x^2-sqrt(1-14x+27x^2-14x^3+x^4))/(4x); G.f.: 1/(1-3x/((1-x)^2-2x/(1-3x/((1-x)^2-2x/(1-3x/((1-x)^2-2x/(1-3x/(1-... (continued fraction); a(n) = Sum_{k=0..n} (0^(n+k)+C(n+k-1,2k-1))*A103210(k) = 0^n + Sum_{k=0..n} C(n+k-1,2k-1)*A103210(k). Conjecture: (n+1)*a(n) +7*(-2*n+1)*a(n-1) +27*(n-2)*a(n-2) +7*(-2*n+7)*a(n-3) +(n-5)*a(n-4)=0. - R. J. Mathar, Feb 10 2015 MAPLE A166696 := proc(n)     if n = 0 then         1;     else         add((0^(n+k)+binomial(n+k-1, 2*k-1))*A103210(k), k=0..n) ;     end if; end proc: # R. J. Mathar, Feb 10 2015 MATHEMATICA CoefficientList[Series[(1 - 3*t + t^2 - Sqrt[1 - 14*t + 27*t^2 - 14*t^3 + t^4])/(4*t), {t, 0, 50}], t] (* G. C. Greubel, May 23 2016 *) CROSSREFS Sequence in context: A136781 A225439 A180400 * A058194 A179815 A118353 Adjacent sequences:  A166693 A166694 A166695 * A166697 A166698 A166699 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 18 2009 EXTENSIONS A-number in formula corrected by R. J. Mathar, Feb 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:47 EST 2019. Contains 329806 sequences. (Running on oeis4.)