OFFSET
0,2
COMMENTS
Apply the Riordan array (1,x/(1-x)^2) to the large Schroeder numbers.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
FORMULA
G.f.: (1-3x+x^2-sqrt(1-10x+19x^2-10x^3+x^4))/(2x);
G.f.: 1/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/(1-... (continued fraction);
Conjecture: (n+1)*a(n) +5*(1-2n)*a(n-1) +19*(n-2)*a(n-2) +5*(7-2*n)*a(n-3) +(n-5)*a(n-4)=0. - R. J. Mathar, Nov 16 2011
MATHEMATICA
CoefficientList[Series[(1 - 3*t + t^2 - Sqrt[1 - 10*t + 19*t^2 - 10*t^3 + t^4])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, May 23 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 18 2009
STATUS
approved