login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1

%I #14 Nov 24 2016 09:43:35

%S 1,34,1122,37026,1221858,40321314,1330603362,43909910946,

%T 1449027061218,47817893020194,1577990469666402,52073685498991266,

%U 1718431621466711217,56708243508401451648,1871372035777247294016,61755277180649140560384

%N Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

%C The initial terms coincide with those of A170753, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A166682/b166682.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -528).

%F G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 - 32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).

%t With[{num=Total[2t^Range[11]]+t^12+1,den=Total[-32 t^Range[11]]+528t^12+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Aug 19 2011 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009