|
|
A166625
|
|
Totally multiplicative sequence with a(p) = 4p for prime p.
|
|
1
|
|
|
1, 8, 12, 64, 20, 96, 28, 512, 144, 160, 44, 768, 52, 224, 240, 4096, 68, 1152, 76, 1280, 336, 352, 92, 6144, 400, 416, 1728, 1792, 116, 1920, 124, 32768, 528, 544, 560, 9216, 148, 608, 624, 10240, 164, 2688, 172, 2816, 2880, 736, 188, 49152, 784, 3200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Multiplicative with a(p^e) = (4p)^e.
If n = Product p(k)^e(k) then a(n) = Product (4*p(k))^e(k).
a(n) = n * A165825(n) = n * 4^bigomega(n) = n * 4^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 4 * p^(1 - s)). - Ilya Gutkovskiy, Oct 30 2019
|
|
MATHEMATICA
|
Table[n 4^PrimeOmega[n], {n, 50}] (* Harvey P. Dale, Jan 20 2014 *)
|
|
PROG
|
(PARI) a(n) = n*4^bigomega(n); \\ Altug Alkan, May 19 2016
|
|
CROSSREFS
|
Cf. A001222, A165825.
Sequence in context: A298901 A305236 A069186 * A038290 A002288 A216711
Adjacent sequences: A166622 A166623 A166624 * A166626 A166627 A166628
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Jaroslav Krizek, Oct 18 2009
|
|
STATUS
|
approved
|
|
|
|