login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166623 Irregular triangle read by rows, in which row n lists the Münchhausen numbers in base n, for 2 <= n. 5
1, 2, 1, 5, 8, 1, 29, 55, 1, 1, 3164, 3416, 1, 3665, 1, 1, 28, 96446, 923362, 1, 3435, 1, 34381388, 34381640, 1, 20017650854, 1, 93367, 30033648031, 8936504649405, 8936504649431, 1, 31, 93344, 17852200903304, 606046687989917 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Let N = Sum_i d_i b^i be the base b expansion of N. Then N has the Münchhausen property in base b if and only if N = Sum_i (d_i)^(d_i).

Convention: 0^0 = 1.

LINKS

Karl W. Heuer, Rows n = 2..35, flattened (each row starts with 1)

John D. Cook, Münchausen numbers (2016)

Daan van Berkel, On a curious property of 3435, arXiv:0911.3038 [math.HO], 2009.

Eric W. Weisstein, "Münchhausen Number." From MathWorld--A Wolfram Web Resource.

EXAMPLE

For example: the base 4 representation of 29 is [1,3,1] (29 = 1*4^2 + 3*4^1 + 1*4^0). Furthermore, 29 = 1^1 + 3^3 + 1^1. Therefore 29 has the Münchhausen property in base 4.

Because 1 = 1^1 in every base, a 1 in the sequence signifies a new base. So the sequence can best be read in the following form:

1, 2;

1, 5, 8;

1, 29, 55;

1;

1, 3164, 3416;

1, 3665;

1;

1, 28, 96446, 923362;

1, 3435;

PROG

(GAP) next := function(result, n) local i; result[1] := result[1] + 1; i := 1; while result[i] = n do result[i] := 0; i := i + 1; if (i <= Length(result)) then result[i] := result[i] + 1; else Add(result, 1); fi; od; return result; end; munchausen := function(coefficients) local sum, index; sum := 0; for index in coefficients do sum := sum + index^index; od; return sum; end; for m in [2..10] do max := 2*m^m; n := 1; coefficients := [1]; while n <= max do sum := munchausen(coefficients); if (n = sum) then Print(n, "\n"); fi; n := n + 1; coefficients := next(coefficients, m); od; od;

CROSSREFS

See A046253 for base 10.

Sequence in context: A193603 A059274 A082635 * A094510 A023677 A108599

Adjacent sequences:  A166620 A166621 A166622 * A166624 A166625 A166626

KEYWORD

nonn,base,tabf

AUTHOR

Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Oct 18 2009

EXTENSIONS

Edited (but not checked) by N. J. A. Sloane, Nov 10 2009

More terms from Karl W. Heuer, Aug 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.