login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166586 Totally multiplicative sequence with a(p) = p - 2 for prime p. 19
1, 0, 1, 0, 3, 0, 5, 0, 1, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 9, 0, 1, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 3, 0, 45, 0, 25, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 5, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 9, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

Multiplicative with a(p^e) = (p-2)^e. If n = Product p(k)^e(k) then a(n) = Product (p(k) - 2)^e(k). a(2k) = 0 for k >= 1.

a(A000244(n)) = 1. - Michel Marcus, Dec 13 2014

Dirichlet g.f.: 1 / Product_{p prime} (1 - p^(1 - s) + 2p^s). The Dirichlet inverse is multiplicative with b(p) = 2 - p, b(p^e) = 0, for e > 1. - Álvar Ibeas, Nov 24 2017

MAPLE

f:= proc(n) local t;

    mul((t[1]-2)^t[2], t=ifactors(n)[2])

end proc:

map(f, [$1..100]); # Robert Israel, Jun 07 2016

MATHEMATICA

a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 06 2016 *)

PROG

(PARI) a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] -= 2); factorback(f); \\ Michel Marcus, Dec 13 2014

CROSSREFS

Cf. A000244 (powers of 3).

Sequence in context: A234434 A234020 A276833 * A122274 A003966 A123931

Adjacent sequences:  A166583 A166584 A166585 * A166587 A166588 A166589

KEYWORD

nonn,mult

AUTHOR

Jaroslav Krizek, Oct 17 2009

EXTENSIONS

More terms from Alonso del Arte, Dec 10 2014

a(69) and a(75) corrected by G. C. Greubel, Jun 06 2016

Erroneous formula and program removed by G. C. Greubel, Jun 06 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 16:28 EST 2018. Contains 299356 sequences. (Running on oeis4.)