login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).
1

%I #19 Dec 07 2024 02:24:28

%S 1,3,3,0,24,12,-30,0,180,60,0,-720,0,1440,360,2520,0,-12600,0,12600,

%T 2520,0,120960,0,-201600,0,120960,20160,-771120,0,3810240,0,-3175200,

%U 0,1270080,181440,0,-61689600,0,101606400,0,-50803200,0,14515200,1814400

%N Triangle read by rows: T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).

%C I think the rows are indexed by t = 0, 1, 2, ..., and in each row we expand the polynomial in powers of x. - _N. J. A. Sloane_, Dec 14 2010

%C Former name: Triangle read by rows: expansion of p(x,t) = exp(x*t)*(3*exp(t) - 1)/(exp(t) + 1), with coefficient of x^n scaled by multiplication by (n!*(n + 2)!/4). - _G. C. Greubel_, Nov 30 2024

%H G. C. Greubel, <a href="/A166553/b166553.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (n!*(n+2)!/2) * [t^n]( exp(x*t)*(3*exp(t) - 1)/(exp(t) + 1) ).

%F From _G. C. Greubel_, Nov 30 2024: (Start)

%F T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).

%F T(n, k) = [x^k]( (1/2)*(n+2)!*( 3*x^n - 2*Sum_{j=0..n} binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j) ) ).

%F T(n, n) = 3*A001715(n+2) = (n+2)!/2.

%F T(n, n-1) = 3*A005990(n+1). (End)

%e Triangle begins as:

%e 1;

%e 3, 3;

%e 0, 24, 12;

%e -30, 0, 180, 60;

%e 0, -720, 0, 1440, 360;

%e 2520, 0, -12600, 0, 12600, 2520;

%e 0, 120960, 0, -201600, 0, 120960, 20160;

%e -771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440;

%t (* first program *)

%t p[t_]= Exp[x*t](3*Exp[t] - 1)/(Exp[t] + 1);

%t With[{m=12}, Table[(n!*(n+2)!/2)*CoefficientList[SeriesCoefficient[ Series[p[t], {t,0,m+1}], n], x], {n,0,m}]]//Flatten

%t (* Second program *)

%t f[n_, x_]:= (n+2)!*(3*EulerE[n, x+1] - EulerE[n, x])/4;

%t A166553[n_, k_]:= Coefficient[Series[f[n, x], {x,0,n}], x, k];

%t Table[A166553[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 30 2024 *)

%o (Magma)

%o m:= 13;

%o R<x>:=PowerSeriesRing(Integers(), m+1);

%o EulerE:= func< n | (2^(n+1)/(n+1))*( Evaluate(BernoulliPolynomial(n+1), 1/2) - 2^(n+1)*Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;

%o f:= func< n,x | (Factorial(n+2)/2)*( 3*x^n - 2*(&+[ Binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j): j in [0..n]]) ) >;

%o A166553:= func< n,k | Coefficient(R!( f(n,x) ), k) >;

%o [A166553(n,k): k in [0..n], n in [0..m]]; // _G. C. Greubel_, Nov 30 2024

%o (SageMath)

%o def f(n,x): return (factorial(n+2)/2)*( 3*x^n - 2*sum( binomial(n,j)*euler_number(j)*(x-1/2)^(n-j)/2^j for j in range(n+1)) )

%o def A166553(n,k): return ( f(n,x) ).series(x,n+1).list()[k]

%o print(flatten([[A166553(n,k) for k in range(n+1)] for n in range(14)])) # _G. C. Greubel_, Nov 30 2024

%Y Cf. A001715, A005990, A028296.

%K sign,tabl

%O 0,2

%A _Roger L. Bagula_, Dec 12 2010

%E I rewrote the definition. - _N. J. A. Sloane_, Dec 14 2010

%E New name by _G. C. Greubel_, Nov 30 2024