login
Triangle read by rows, A047999 * A007318; (Sierpinski's gasket * Pascal's triangle).
2

%I #5 Jun 02 2023 01:36:58

%S 1,2,1,2,2,1,4,6,4,1,2,4,6,4,1,4,10,16,14,6,1,4,12,22,24,16,6,1,8,28,

%T 56,70,56,28,8,1,2,8,28,56,70,56,28,8,1,4,18,64,140,196,182,112,44,10,

%U 1,4,20,74,176,280,308,238,128,46,10,1

%N Triangle read by rows, A047999 * A007318; (Sierpinski's gasket * Pascal's triangle).

%C Row sums = A001317, (1, 3, 5, 15, 17, 51, 85, 255,...).

%C Left border = A001316: (1, 2, 2, 4, 2, 4, 4, 8, 2,...).

%F Triangle read by rows, A047999 * A007318; as infinite lower triangular matrices.

%e First few rows of the triangle =

%e 1;

%e 2, 1;

%e 2, 2, 1;

%e 4, 6, 4, 1;

%e 2, 4, 6, 4, 1;

%e 4, 10, 16, 14, 6, 1;

%e 4, 12, 22, 24, 16, 6, 1;

%e 8, 28, 56, 70, 56, 28, 8, 1;

%e 2, 8, 28, 56, 70, 26, 28, 8, 1;

%e 4, 18, 64, 140, 196, 182, 112, 44, 10, 1;

%e 4, 20, 74, 176, 280, 308, 238, 126, 46, 10, 1;

%e 8, 44, 168, 426, 736, 996, 784, 494, 220, 66, 12, 1;

%e 4, 24, 100, 280, 566, 848, 952, 800, 496, 220, 66, 12, 1;

%e ...

%Y Cf. A001316, A001317, A007318, A047999.

%K nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Oct 16 2009

%E a(32) = 56 corrected by _Georg Fischer_, Jun 02 2023