

A166548


Triangle read by rows, A047999 * A007318; (Sierpinski's gasket * Pascal's triangle).


2



1, 2, 1, 2, 2, 1, 4, 6, 4, 1, 2, 4, 6, 4, 1, 4, 10, 16, 14, 6, 1, 4, 12, 22, 24, 16, 6, 1, 8, 28, 56, 70, 57, 28, 8, 1, 2, 8, 28, 56, 70, 56, 28, 8, 1, 4, 18, 64, 140, 196, 182, 112, 44, 10, 1, 4, 20, 74, 176, 280, 308, 238, 128, 46, 10, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Row sums = A001317, (1, 3, 5, 15, 17, 51, 85, 255,...).
Left border = A001316: (1, 2, 2, 4, 2, 4, 4, 8, 2,...).


LINKS

Table of n, a(n) for n=0..65.


FORMULA

Triangle read by rows, A007318 * A047999; as infinite lower triangular matrices.


EXAMPLE

First few rows of the triangle =
1;
2, 1;
2, 2, 1;
4, 6, 4, 1;
2, 4, 6, 4, 1;
4, 10, 16, 14, 6, 1;
4, 12, 22, 24, 16, 6, 1;
8, 28, 56, 70, 56, 28, 8, 1;
2, 8, 28, 56, 70, 26, 28, 8, 1;
4, 18, 64, 140, 196, 182, 112, 44, 10, 1;
4, 20, 74, 176, 280, 308, 238, 126, 46, 10, 1;
8, 44, 168, 426, 736, 996, 784, 494, 220, 66, 12, 1;
4, 24, 100, 280, 566, 848, 952, 800, 496, 220, 66, 12, 1;
...


CROSSREFS

Cf. A047999, A001316, A001317
Sequence in context: A062602 A123148 A173410 * A273138 A181281 A171683
Adjacent sequences: A166545 A166546 A166547 * A166549 A166550 A166551


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Oct 16 2009


STATUS

approved



