%I #22 Feb 16 2025 08:33:11
%S 1,8,0,9,5,6,2,5,6,2,1,6,5,4,5,1,0,8,0,1,6,1,5,3,5,5,5,3,1,2,6,3,4,5,
%T 4,7,0,6,6,3,0,0,6,4,7,7,1,0,7,4,9,7,5,9,9,9,9,9,9,9,9,0,1,2,3,6,9,3,
%U 6,7,1,2,4,1,3,2,7,6,5,2,2,4,7,2,4,1,9,7,9,0,8,9,7,3,0,8,4,9,4,4,7,1,8,5,6
%N Decimal expansion of A060295^3.
%C Near-integer obtained by cubing Ramanujan's constant e^(Pi*sqrt(163)).
%D Henri Cohen, A Course in Computational Algebraic Number Theory, 3., corr. print., Springer-Verlag Berlin Heidelberg New York, 1996 p. 383.
%H Math Overflow, <a href="http://mathoverflow.net/questions/4775/why-are-powers-of-exppisqrt163-almost-integers">Questions</a> [From _Mark A. Thomas_, Oct 02 2010]
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostInteger.html">Almost Integer</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Heegner_number">Heegner number</a>
%e exp(3*Pi*sqrt(163)) =
%e 18095625621654510801615355531263454706630064771074975 +
%e 0.99999999012369367124132765224724197908973084944718563892074288285...
%t RealDigits[Exp[Pi Sqrt[163]]^3,10,120][[1]] (* _Harvey P. Dale_, Jun 25 2022 *)
%Y Cf. A166528, A166530, A166531, A166532, A060295.
%K nonn,cons,changed
%O 53,2
%A _Mark A. Thomas_, Oct 16 2009
%E Edited by _N. J. A. Sloane_, Oct 17 2009
%E Previous Mathematica program replaced by _Harvey P. Dale_, Jun 25 2022