login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166524 a(n) = 9*n - a(n-1), with n>1, a(1)=1. 1
1, 17, 10, 26, 19, 35, 28, 44, 37, 53, 46, 62, 55, 71, 64, 80, 73, 89, 82, 98, 91, 107, 100, 116, 109, 125, 118, 134, 127, 143, 136, 152, 145, 161, 154, 170, 163, 179, 172, 188, 181, 197, 190, 206, 199, 215, 208, 224, 217, 233, 226, 242, 235, 251, 244, 260, 253 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1)

FORMULA

a(n) = (18*n + 23*(-1)^n + 9)/4. - Paolo P. Lava, Nov 10 2009

G.f.: -x*(-1-16*x+8*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011

From G. C. Greubel, May 16 2016: (Start)

E.g.f.: (1/4)*(23*exp(-x) + 9*(1 + 2*x)*exp(x) - 32).

a(n) = a(n-1) + a(n-2) - a(n-3). (End)

MATHEMATICA

CoefficientList[Series[-(- 1 - 16 x + 8 x^2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 13 2013 *)

LinearRecurrence[{1, 1, -1}, {1, 17, 10}, 60] (* Harvey P. Dale, Dec 24 2014 *)

PROG

(Magma) [n eq 1 select 1 else 9*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013

CROSSREFS

Sequence in context: A113779 A061049 A348762 * A106791 A040274 A164064

Adjacent sequences: A166521 A166522 A166523 * A166525 A166526 A166527

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Oct 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 19:17 EST 2022. Contains 358421 sequences. (Running on oeis4.)