The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166524 a(n) = 9*n - a(n-1), with n>1, a(1)=1. 1
 1, 17, 10, 26, 19, 35, 28, 44, 37, 53, 46, 62, 55, 71, 64, 80, 73, 89, 82, 98, 91, 107, 100, 116, 109, 125, 118, 134, 127, 143, 136, 152, 145, 161, 154, 170, 163, 179, 172, 188, 181, 197, 190, 206, 199, 215, 208, 224, 217, 233, 226, 242, 235, 251, 244, 260, 253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1) FORMULA a(n) = (18*n + 23*(-1)^n + 9)/4. - Paolo P. Lava, Nov 10 2009 G.f.: -x*(-1-16*x+8*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011 From G. C. Greubel, May 16 2016: (Start) E.g.f.: (1/4)*(23*exp(-x) + 9*(1 + 2*x)*exp(x) - 32). a(n) = a(n-1) + a(n-2) - a(n-3). (End) MATHEMATICA CoefficientList[Series[-(- 1 - 16 x + 8 x^2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 13 2013 *) LinearRecurrence[{1, 1, -1}, {1, 17, 10}, 60] (* Harvey P. Dale, Dec 24 2014 *) PROG (Magma) [n eq 1 select 1 else 9*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013 CROSSREFS Sequence in context: A113779 A061049 A348762 * A106791 A040274 A164064 Adjacent sequences: A166521 A166522 A166523 * A166525 A166526 A166527 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Oct 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:17 EST 2022. Contains 358421 sequences. (Running on oeis4.)