The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166371 a(n) = (A166351(n))^2 = ((6*n)!/((3*n)!))^2. 1
 1, 14400, 442597478400, 311283409572495360000, 1677789268237349829381980160000, 41145365786974742781838753372569600000000, 3375889771315468222156818412294164248002560000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Integral representation as n-th moment of a positive function on a positive half-axis (solution of the Stieltjes moment problem). In Maple notation: a(n)=int(x^n*((1/6)*BesselK(0,(1/2)*x^(1/6))/(x^(5/6)*Pi)), x=0..infinity), n=0,1... . This solution is not unique. LINKS G. C. Greubel, Table of n, a(n) for n = 0..50 FORMULA G.f.: Sum{n>=0} a(n)*x^n/(n!)^6 = hypergeom([1/6, 1/6, 1/2, 1/2, 5/6, 5/6], [1, 1, 1, 1, 1], 2985984*x). Asymptotics: a(n) = (2-1/(18*n) + 1/(1296*n^2)+247/(699840*n^3) + O(1/n^4))*(12^n)^6/((exp(n))^6*((1/n)^n)^6), n->infinity. MATHEMATICA Table[((6*n)!/(3*n)!)^2, {n, 0, 10}] (* G. C. Greubel, May 10 2016 *) PROG (Magma) [(Factorial(6*n)/(Factorial(3*n)))^2: n in [0..20]]; // Vincenzo Librandi, May 11 2016 CROSSREFS Cf. A166351 Sequence in context: A226286 A203729 A144649 * A234487 A234977 A250960 Adjacent sequences: A166368 A166369 A166370 * A166372 A166373 A166374 KEYWORD nonn AUTHOR Karol A. Penson, Oct 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:25 EST 2022. Contains 358700 sequences. (Running on oeis4.)