login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166371 a(n) = (A166351(n))^2 = ((6*n)!/((3*n)!))^2. 1
1, 14400, 442597478400, 311283409572495360000, 1677789268237349829381980160000, 41145365786974742781838753372569600000000, 3375889771315468222156818412294164248002560000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Integral representation as n-th moment of a positive function on a positive half-axis (solution of the Stieltjes moment problem).

In Maple notation: a(n)=int(x^n*((1/6)*BesselK(0,(1/2)*x^(1/6))/(x^(5/6)*Pi)), x=0..infinity), n=0,1... .

This solution is not unique.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..50

FORMULA

G.f.: Sum{n>=0} a(n)*x^n/(n!)^6 = hypergeom([1/6, 1/6, 1/2, 1/2, 5/6, 5/6], [1, 1, 1, 1, 1], 2985984*x).

Asymptotics: a(n) = (2-1/(18*n) + 1/(1296*n^2)+247/(699840*n^3) + O(1/n^4))*(12^n)^6/((exp(n))^6*((1/n)^n)^6), n->infinity.

MATHEMATICA

Table[((6*n)!/(3*n)!)^2, {n, 0, 10}] (* G. C. Greubel, May 10 2016 *)

PROG

(Magma) [(Factorial(6*n)/(Factorial(3*n)))^2: n in [0..20]]; // Vincenzo Librandi, May 11 2016

CROSSREFS

Cf. A166351

Sequence in context: A226286 A203729 A144649 * A234487 A234977 A250960

Adjacent sequences: A166368 A166369 A166370 * A166372 A166373 A166374

KEYWORD

nonn

AUTHOR

Karol A. Penson, Oct 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:25 EST 2022. Contains 358700 sequences. (Running on oeis4.)