This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166349 Coefficients of recursive differential polynomial:p(x,3)=x*(x^2 + 6*x + 1)/(1 - x)^4;p(x, n) = 2*x*D[p(x, n - 1), x]-p(x,n-2) 0
 1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 128, 382, 128, 1, 1, 493, 3346, 3346, 493, 1, 1, 1858, 24879, 54044, 24879, 1858, 1, 1, 6955, 169209, 683995, 683995, 169209, 6955, 1, 1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1, 1, 96985, 6809140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are:{1, 2, 8, 64, 640, 7680, 107520, 1720320, 30965760, 619315200, 13624934400,...} REFERENCES Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91 LINKS FORMULA p(x,0)= 1/(1 - x); p(x,1)= x/(1 - x)^2; p(x,2)= x*(1 + x)/(1 - x)^3; p(x,3)= x*(x^2 +6*x + 1)/(1 - x)^4; p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2] EXAMPLE {1}, {1, 1}, {1, 6, 1}, {1, 31, 31, 1}, {1, 128, 382, 128, 1}, {1, 493, 3346, 3346, 493, 1}, {1, 1858, 24879, 54044, 24879, 1858, 1}, {1, 6955, 169209, 683995, 683995, 169209, 6955, 1}, {1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1}, {1, 96985, 6809140, 74898500, 227852974, 227852974, 74898500, 6809140, 96985, 1}, {1, 361982, 41561069, 702794856, 3327271698, 5480955188, 3327271698, 702794856, 41561069, 361982, 1} MATHEMATICA p[x_, 0] := 1/(1 - x); p[x_, 1] := x/(1 - x)^2; p[x_, 2] := x*(1 + x)/(1 - x)^3; p[x_, 3] := x*(x^2 + 6*x + 1)/(1 - x)^4; p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2] a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}]; Flatten[a] Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}]; CROSSREFS Sequence in context: A265603 A174186 A111578 * A176429 A157155 A022169 Adjacent sequences:  A166346 A166347 A166348 * A166350 A166351 A166352 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Oct 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 07:10 EDT 2019. Contains 325134 sequences. (Running on oeis4.)