|
|
A166328
|
|
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
|
|
1
|
|
|
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236190, 708552, 2125608, 6376680, 19129608, 57387528, 172158696, 516464424, 1549358280, 4647969864, 13943594664, 41829839238, 125486683524, 376451548188, 1129329137988
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,2,2,2,2,2,2,2,2,-3).
|
|
FORMULA
|
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
|
|
MAPLE
|
seq(coeff(series((1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), t, n+1), t, n), n = 0..30); # G. C. Greubel, Mar 12 2020
|
|
MATHEMATICA
|
CoefficientList[Series[(1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12), {t, 0, 30}], t] (* G. C. Greubel, May 09 2016 *)
coxG[{11, 3, -2}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 12 2020 *)
|
|
PROG
|
(Sage)
def A166328_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-3*t+5*t^11-3*t^12) ).list()
A166328_list(30) # G. C. Greubel, Aug 10 2019
|
|
CROSSREFS
|
Sequence in context: A164697 A165184 A165756 * A166468 A166858 A167105
Adjacent sequences: A166325 A166326 A166327 * A166329 A166330 A166331
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Dec 03 2009
|
|
STATUS
|
approved
|
|
|
|