This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166322 The number of times a point sum n is attained in all 7^6 permutations of throwing 7 dice. 2
 1, 7, 28, 84, 210, 462, 917, 1667, 2807, 4417, 6538, 9142, 12117, 15267, 18327, 20993, 22967, 24017, 24017, 22967, 20993, 18327, 15267, 12117, 9142, 6538, 4417, 2807, 1667, 917, 462, 210, 84, 28, 7, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,2 COMMENTS The sum for any number of dice can be obtained by summing the trailing six terms of the sequence above - assuming leading zeros. 1 1 1 1 1 1 1 2 3 4 5 6 5 4 3 2 1 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1 1 4 10 20 35 56 80 104 125 140 125 104 80 56 35 20 10 4 1 etc. LINKS FORMULA F_{s,i}(k)= sum(n=0, floor((k-i)/s), (-1)^n*binomial(n,i)*binomial(i-1,k-s*n-1)). PROG (PARI) Vec(((sum(k=1, 6, x^k))^7+O(x^66))) /* Joerg Arndt, Mar 04 2013 */ CROSSREFS A056150 gives sums for 3 dice. A108907 gives sums for 6 dice. A063260 gives the sums for 2 dice through to 6 dice. Sequence in context: A163705 A162595 A073363 * A008499 A049018 A008489 Adjacent sequences:  A166319 A166320 A166321 * A166323 A166324 A166325 KEYWORD nonn,fini,full AUTHOR Robert Goodhand (robert(AT)rgoodhand.fsnet.co.uk), Oct 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .