login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166320 Numbers which are proper divisors of the number obtained by cyclic right-shift by 2 positions. 0
142857, 153846, 190476, 230769, 238095, 307692, 142857142857, 153846153846, 190476190476, 230769230769, 238095238095, 307692307692, 1176470588235294, 100250626566416040, 102756892230576441, 105263157894736842, 107769423558897243 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers which are invariant under the cyclic shift are not in the sequence, because they are not proper divisors of themselves.

LINKS

Table of n, a(n) for n=1..17.

EXAMPLE

153846 is a proper divisor of 461538, obtained by moving the two least significant digits "46" to the front.

230769 is a proper divisor of 692307, obtained by moving the least significant digits "69" to the front.

MAPLE

cycShft := proc(n) local L, Ls ; if n < 100 then n; else L := convert(n, base, 10) ; Ls := [op(3..nops(L), L), op(1..2, L)] ; add(op(i, Ls)*10^(i-1), i=1..nops(Ls)) ; end if; end proc:

isA166320 := proc(n) local c; c := cycShft(n) ; return c mod n = 0 and c <> n ; end:

for n from 100 do if isA166320(n) then printf("%d, \n", n) ; fi; od: # R. J. Mathar, Oct 14 2009

PROG

(PARI) { genupto(m) = R = []; for(k=2, 9, for(a=10*k, 99, d = 100*k - 1; q = znorder( Mod(10, d/gcd(d, a)) ); forstep(z=q, m, q, R = concat(R, [(10^z-1)*a/d]); ); ); ); vecsort(R, , 8) } \\ generate all terms of length up to m. Max Alekseyev, Jan 22 2012

CROSSREFS

Sequence in context: A086999 A175694 A023089 * A101202 A323711 A306265

Adjacent sequences:  A166317 A166318 A166319 * A166321 A166322 A166323

KEYWORD

nonn,base

AUTHOR

Claudio Meller, Oct 11 2009

EXTENSIONS

keyword:base added by R. J. Mathar, Oct 14 2009

Corrected my number typo in the examples - R. J. Mathar, Oct 23 2009

More terms from Sean A. Irvine, Feb 25 2010

More terms from Max Alekseyev, Jan 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 12:18 EDT 2019. Contains 328160 sequences. (Running on oeis4.)