OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
G.f.: (1+x)*(1-x^10)/(1 -46*x +1080*x^10 -1035*x^11). - G. C. Greubel, Apr 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^10)/(1-46*x+1080*x^10-1035*x^11), {x, 0, 20}], x] (* G. C. Greubel, May 09 2016, modified Apr 25 2019 *)
coxG[{10, 1035, -45}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 07 2017 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^10)/(1-46*x+1080*x^10 -1035*x^11)) \\ G. C. Greubel, Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^10)/(1-46*x+1080*x^10-1035*x^11) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^10)/(1-46*x+1080*x^10-1035*x^11)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved