login
A166299
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having k UUDD's starting at level 0.
2
1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 2, 0, 5, 2, 0, 1, 10, 4, 3, 0, 22, 11, 3, 0, 1, 50, 22, 6, 4, 0, 113, 49, 18, 4, 0, 1, 260, 114, 36, 8, 5, 0, 605, 260, 81, 26, 5, 0, 1, 1418, 604, 193, 52, 10, 6, 0, 3350, 1419, 444, 118, 35, 6, 0, 1, 7967, 3350, 1041, 288, 70, 12, 7, 0, 19055, 7966
OFFSET
0,10
COMMENTS
Sum of entries in row n is the secondary structure number A004148(n-1) (n>=2).
Number of entries in row n is 1 + floor(n/2).
T(n,0)=A166300(n).
Sum(k*T(n,k), k>=0)=A075125(n+2).
FORMULA
G.f.=G(t,z)=1/(1 + z - zg - tz^2), where g=g(z) satisfies g=1 + zg(g - 1 + z).
G.f. of column k is z^{2k}/(1 + z - zg)^{k+1} (k>=0).
G(t,z)=2/[1+z+z^2+sqrt((1+z+z^2)(1-3z+z^2)-2tz^2)].
EXAMPLE
T(7,2)=3 because we have (UUDD)(UUDD)UUUDDD, (UUDD)UUUDDD(UUDD), and UUUDDD(UUDD)(UUDD) (the UUDD's starting at level 0 are shown between parentheses).
Triangle starts:
1;
0;
0,1;
1,0;
1,0,1;
2,2,0;
5,2,0,1;
10,4,3,0;
MAPLE
G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))-2*t*z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 07 2009
STATUS
approved