login
A166289
Number of Dyck paths with no UUU's and no DDD's, of semilength n and having no UDUD's (U=(1,1), D=(1,-1)).
1
1, 1, 1, 2, 2, 4, 6, 9, 17, 26, 46, 81, 135, 246, 428, 757, 1373, 2431, 4411, 7990, 14434, 26423, 48137, 88144, 162086, 297662, 549342, 1014677, 1876551, 3480596, 6458974, 12008923, 22361683, 41675773, 77797373, 145368548, 271917704
OFFSET
0,4
COMMENTS
a(n) = A166288(n,0).
LINKS
FORMULA
G.f.: G(z) satisfies z^3*G^2 - (1-z)(1+z)^2*G + (1+z)^2*G = 0.
D-finite with recurrence +(n+3)*a(n) +(n+1)*a(n-1) -2*n*a(n-2) +2*(-3*n+5)*a(n-3) +(-3*n+11)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(5)=4 because we have UDUUDDUUDD, UUDDUDUUDD, UUDDUUDDUD, and UUDUUDDUDD.
MAPLE
F := RootOf(z^3*G^2-(1-z)*(1+z)^2*G+(1+z)^2, G): Fser := series(F, z = 0, 40): seq(coeff(Fser, z, n), n = 0 .. 36);
CROSSREFS
Cf. A166288.
Sequence in context: A304778 A173495 A376195 * A071058 A376005 A076178
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 12 2009
STATUS
approved