login
A166263
a(j) = maximum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
1
348511, 38, 155, 389, 778, 1296, 1828, 2321, 3683, 3935, 4078, 6184, 8783, 9013, 9880, 15182, 12449, 19828, 18884, 14593, 22316, 25738, 26064, 26670, 31953, 33332, 45025, 35788, 37881, 50299, 39562, 49598, 77850, 56777, 53024, 70443, 71992
OFFSET
1,1
COMMENTS
a(1) appears to increase indefinitely, so the static sequence starts from a(2).
The value of a(1) is the index of the largest prime p < 5*10^6 for which Sum of the quadratic non-residues of p = Sum of the quadratic residues of p.
The table below shows for each value of a(j) the corresponding values of p(a(j)) and (Sum of the quadratic non-residues of p(a(j)) - Sum of the quadratic residues of p(a(j))) / p(a(j)):
.
j a(j) prime(a(j)) (SQN-SQR)/prime(a(j))
-- ------ ----------- ---------------------
1 348511 4999961 0
2 38 163 1
3 155 907 3
4 389 2683 5
5 778 5923 7
6 1296 10627 9
7 1828 15667 11
8 2321 20563 13
9 3683 34483 15
10 3935 37123 17
11 4078 38707 19
12 6184 61483 21
13 8783 90787 23
14 9013 93307 25
15 9880 103387 27
16 15182 166147 29
17 12449 133387 31
18 19828 222643 33
19 18884 210907 35
20 14593 158923 37
21 22316 253507 39
22 25738 296587 41
23 26064 300787 43
24 26670 308323 45
25 31953 375523 47
26 33332 393187 49
27 45025 546067 51
28 35788 425107 53
29 37881 452083 55
30 50299 615883 57
31 39562 474307 59
32 49598 606643 61
33 77850 991027 63
34 56777 703123 65
35 53024 652723 67
36 70443 888427 69
37 71992 909547 71
38 70328 886867 73
39 72479 916507 75
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..1973.
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved