login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166138 Trisection A022998(3n+1). 4
1, 8, 7, 20, 13, 32, 19, 44, 25, 56, 31, 68, 37, 80, 43, 92, 49, 104, 55, 116, 61, 128, 67, 140, 73, 152, 79, 164, 85, 176, 91, 188, 97, 200, 103, 212, 109, 224, 115, 236, 121, 248, 127, 260, 133, 272, 139, 284, 145, 296, 151, 308, 157, 320, 163, 332, 169, 344, 175, 356, 181, 368, 187, 380, 193, 392 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

a(2n) = 6n+1 = A016921(n).

a(2n+1) = 12n+8 = A017617(n).

a(n) = 2*a(n-2)-a(n-4) = (3n+1)*(3-(-1)^n)/2.

From G. C. Greubel, Apr 26 2016: (Start)

O.g.f.: (1 + 8*x + 5*x^2 + 4*x^3)/((1 - x)^2*(1 + x)^2).

E.g.f.: (1/2)*(-1 + 3*x + (3+9*x)*exp(2*x))*exp(-x). (End)

MATHEMATICA

LinearRecurrence[{0, 2, 0, -1}, {1, 8, 7, 20}, 70] (* Harvey P. Dale, Aug 15 2012 *)

Table[If[OddQ@ #, #, 2 #] &[3 n + 1], {n, 0, 65}] (* or *)

CoefficientList[Series[(1 + 8 x + 5 x^2 + 4 x^3)/((1 - x)^2 (1 + x)^2), {x, 0, 65}], x] (* Michael De Vlieger, Apr 27 2016 *)

CROSSREFS

Cf. A165988, A166304.

Sequence in context: A051011 A298666 A075573 * A126937 A282471 A267093

Adjacent sequences:  A166135 A166136 A166137 * A166139 A166140 A166141

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Oct 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 13:38 EST 2018. Contains 299581 sequences. (Running on oeis4.)