%I #12 Feb 10 2020 18:24:36
%S 1,4,9,15,20,46,39,43,52,76,64,83,118,92,166,154,128,146,173,236,228,
%T 190,283,215,434,240,246,395,607,377,357,536,349,492,519,444,722,430,
%U 635,814,598,512,541,562,700,821,633,708,893,729,738
%N a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
%H Christopher Hunt Gribble, <a href="/A166131/b166131.txt">Table of n, a(n) for n = 1..1973</a>.
%e The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j))
%e .
%e j a(j) prime(a(j)) (SQN-SQR)/prime(a(j))
%e -- ---- ----------- ---------------------
%e 1 1 2 0
%e 2 4 7 1
%e 3 9 23 3
%e 4 15 47 5
%e 5 20 71 7
%e 6 46 199 9
%e 7 39 167 11
%e 8 43 191 13
%e 9 52 239 15
%e 10 76 383 17
%e 11 64 311 19
%e 12 83 431 21
%e 13 118 647 23
%e 14 92 479 25
%e 15 166 983 27
%e 16 154 887 29
%e 17 128 719 31
%e 18 146 839 33
%e 19 173 1031 35
%e 20 236 1487 37
%e 21 228 1439 39
%e 22 190 1151 41
%e 23 283 1847 43
%e 24 215 1319 45
%e 25 434 3023 47
%e 26 240 1511 49
%e 27 246 1559 51
%e 28 395 2711 53
%e 29 607 4463 55
%e 30 377 2591 57
%e 31 357 2399 59
%e 32 536 3863 61
%e 33 349 2351 63
%e 34 492 3527 65
%e 35 519 3719 67
%e 36 444 3119 69
%e 37 722 5471 71
%e 38 430 2999 73
%e 39 635 4703 75
%e 40 814 6263 77
%e 41 598 4391 79
%e 42 512 3671 81
%e 43 541 3911 83
%e 44 562 4079 85
%e 45 700 5279 87
%e 46 821 6311 89
%e 47 633 4679 91
%e 48 708 5351 93
%e 49 893 6959 95
%e 50 729 5519 97
%e 51 738 5591 99
%Y Cf. A165951, A165974, A004273.
%K nonn
%O 1,2
%A _Christopher Hunt Gribble_, Oct 07 2009
%E Sequence corrected and comments added by _Christopher Hunt Gribble_, Oct 10 2009