login
a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
1

%I #12 Feb 10 2020 18:24:36

%S 1,4,9,15,20,46,39,43,52,76,64,83,118,92,166,154,128,146,173,236,228,

%T 190,283,215,434,240,246,395,607,377,357,536,349,492,519,444,722,430,

%U 635,814,598,512,541,562,700,821,633,708,893,729,738

%N a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.

%H Christopher Hunt Gribble, <a href="/A166131/b166131.txt">Table of n, a(n) for n = 1..1973</a>.

%e The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j))

%e .

%e j a(j) prime(a(j)) (SQN-SQR)/prime(a(j))

%e -- ---- ----------- ---------------------

%e 1 1 2 0

%e 2 4 7 1

%e 3 9 23 3

%e 4 15 47 5

%e 5 20 71 7

%e 6 46 199 9

%e 7 39 167 11

%e 8 43 191 13

%e 9 52 239 15

%e 10 76 383 17

%e 11 64 311 19

%e 12 83 431 21

%e 13 118 647 23

%e 14 92 479 25

%e 15 166 983 27

%e 16 154 887 29

%e 17 128 719 31

%e 18 146 839 33

%e 19 173 1031 35

%e 20 236 1487 37

%e 21 228 1439 39

%e 22 190 1151 41

%e 23 283 1847 43

%e 24 215 1319 45

%e 25 434 3023 47

%e 26 240 1511 49

%e 27 246 1559 51

%e 28 395 2711 53

%e 29 607 4463 55

%e 30 377 2591 57

%e 31 357 2399 59

%e 32 536 3863 61

%e 33 349 2351 63

%e 34 492 3527 65

%e 35 519 3719 67

%e 36 444 3119 69

%e 37 722 5471 71

%e 38 430 2999 73

%e 39 635 4703 75

%e 40 814 6263 77

%e 41 598 4391 79

%e 42 512 3671 81

%e 43 541 3911 83

%e 44 562 4079 85

%e 45 700 5279 87

%e 46 821 6311 89

%e 47 633 4679 91

%e 48 708 5351 93

%e 49 893 6959 95

%e 50 729 5519 97

%e 51 738 5591 99

%Y Cf. A165951, A165974, A004273.

%K nonn

%O 1,2

%A _Christopher Hunt Gribble_, Oct 07 2009

%E Sequence corrected and comments added by _Christopher Hunt Gribble_, Oct 10 2009