login
A166068
a(n) = a(n-1)+ [least square > a(n-1)].
1
1, 5, 14, 30, 66, 147, 316, 640, 1316, 2685, 5389, 10865, 21890, 43794, 87894, 176103, 352503, 705339, 1410939, 2822283, 5644683, 11290059, 22586380, 45177389, 90362673, 180726709, 361467845, 722962014, 1445926558, 2891903234
OFFSET
1,2
COMMENTS
This sequence is the base sequence of the map: a(n) = a(n-1)+ [least square > a(n-1)] if a(n) is not divisible by Y, else a(n)=a(n-1)/Y, where Y is a positive integer.
Experimental results shows this map converges to a periodic orbit for all Y.
What is the number and length of periodic orbits for different Y?
What is the trajectory of some input under the map? If Y=2, the map converges to two periodic orbits, {1-5-14-7-16-8-4-2} and {11-27-63-127-271-560-280-140-70-35-71-152-76-38-19-44-22} whose length is L1=8, L2=17.
Two examples of trajectories for initial value 9 resp. 13 under the map for Y=2 are 9-25-61-125-269-558-279-568-284-142-{76-38-19-44-22-11-27-63-127-271-560-280-140-70-35-71-152} and 13-29-65-146-73-154-77-158-79-160-80-40-20-10-{5-14-7-16-8-4-2-1}.
LINKS
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
MAPLE
A[1]:= 1:
for n from 1 to 100 do
A[n+1]:= A[n] + (floor(sqrt(A[n]))+1)^2
od:
seq(A[n], n=1..100); # Robert Israel, Oct 06 2014
PROG
(PARI) lista(n) = {na = 0; for (i=1, n, na += ceil(sqrt(na+1))^2; print1(na, ", "); ); } \\ Michel Marcus, Jun 02 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Oct 06 2009
EXTENSIONS
Typo in data corrected by D. S. McNeil, Aug 17 2010
STATUS
approved