login
A166050
a(n) = Sum_{i=0..(2n+1)} J(i,12n+7), where J(i,k) is the Jacobi symbol.
3
1, -1, 3, -1, 4, -1, 5, -2, 5, -2, 5, -3, 7, -1, 2, -2, 9, -3, 7, -2, 6, -4, 11, -3, 8, -3, 10, -3, 1, -4, 9, -3, 14, -2, 10, -2, 15, -6, 7, 0, 7, -3, 14, -5, 14, -3, 16, -5, 8, -4, 13, -5, 13, -3, 12, -4, 18, -5, 14, -4, 13, -5, 15, -4, 0, -5, 16, -7, 9, -6, 0, -7, 22, -3, 16, -3
OFFSET
0,3
COMMENTS
The height at the 1/6 point of "Jacobi-bridge/path", computed for each odd integer of the form 12n+7.
LINKS
PROG
(MIT Scheme:) (define (A166050 n) (let ((w (A017605 n))) (add (lambda (i) (jacobi-symbol i w)) 0 (/ (-1+ w) 6))))
CROSSREFS
Bisections: A166268, A166269 (see conjectures there). Cf. A017605. Scheme-code for jacobi-symbol is given at A165601.
Sequence in context: A179820 A364098 A363521 * A259655 A221185 A242746
KEYWORD
sign
AUTHOR
Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009.
STATUS
approved