login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165941 G.f.: A(x) = exp( Sum_{n>=1} 2^n * x^n/(n*(1+x^n)) ). 5
1, 2, 2, 6, 10, 18, 42, 78, 154, 314, 626, 1246, 2498, 4994, 9970, 19974, 39930, 79826, 159706, 319374, 638714, 1277530, 2554978, 5109854, 10219922, 20439714, 40879234, 81758854, 163517466, 327034514, 654069866, 1308139246, 2616277578 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).

LINKS

Table of n, a(n) for n=0..32.

FORMULA

G.f.: -1 + 2/(1+x - 2*x/(1+x^2 - 2*x^2/(1+x^3 - 2*x^3/(1+x^4 - 2*x^4/(1+x^5 - 2*x^5/(1+x^6 - 2*x^6/(1+x^7 - 2*x^7/(1+x^8 - 2*x^8/(...))))))))), a continued fraction.

G.f.: A(x) = (1 + x*B(x))/(1 - x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - x^4*E(x)), ... - Paul D. Hanna, Jun 14 2015

a(n) ~ c * 2^n, where c = 0.6091497110662286155211146043057245512950999410185846... - Vaclav Kotesovec, Oct 18 2020

EXAMPLE

G.f.: A(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 42*x^6 + 78*x^7 +...

such that

log(A(x)) = 2*x/(1+x) + 2^2*x^2/(2*(1+x^2)) + 2^3*x^3/(3*(1+x^3)) + 2^4*x^4/(4*(1+x^4)) + 2^5*x^5/(5*(1+x^5)) +...

Also, A(x) = (1 + x*B(x))/(1 - x*B(x)), where

B(x) = 1 + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^6 + 8*x^7 + 6*x^8 + 20*x^9 + 18*x^10 + 36*x^11 + 54*x^12 + 76*x^13 + 150*x^14 + 172*x^15 +...

such that B(x) = (1 + x*C(x))/(1 - x*C(x)), where

C(x) = 1 + 2*x^3 + 2*x^6 + 4*x^7 + 2*x^9 + 8*x^10 + 4*x^11 + 10*x^12 + 12*x^13 + 16*x^14 + 22*x^15 + 32*x^16 + 44*x^17 + 66*x^18 +...

such that C(x) = (1 + x*D(x))/(1 - x*D(x)), where

D(x) = 1 + 2*x^4 + 2*x^8 + 4*x^9 + 2*x^12 + 8*x^13 + 4*x^14 + 8*x^15 + 2*x^16 + 12*x^17 + 16*x^18 + 20*x^19 + 18*x^20 + 24*x^21 +...

such that D(x) = (1 + x*E(x))/(1 - x*E(x)), where

E(x) = 1 + 2*x^5 + 2*x^10 + 4*x^11 + 2*x^15 + 8*x^16 + 4*x^17 + 8*x^18 + 2*x^20 + 12*x^21 + 16*x^22 + 20*x^23 + 16*x^24 + 10*x^25 +...

such that E(x) = (1 + x*F(x))/(1 - x*F(x)), where

F(x) = 1 + 2*x^6 + 2*x^12 + 4*x^13 + 2*x^18 + 8*x^19 + 4*x^20 + 8*x^21 + 2*x^24 + 12*x^25 + 16*x^26 + 20*x^27 + 16*x^28 + 8*x^29 + 18*x^30 + 16*x^31 + 36*x^32 +...

etc.

The coefficients in the above functions tend toward the terms in triangle A259192.

MATHEMATICA

nmax = 40; CoefficientList[Series[Exp[Sum[2^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)

PROG

(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 2^m*x^m/(1+x^m+x*O(x^n))/m)), n))}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x^(n+1-i)*A)/(1 - x^(n+1-i)*A+ x*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A259192, A259273, A259274, A259275, A259276.

Sequence in context: A184842 A181409 A248800 * A054227 A054228 A044044

Adjacent sequences:  A165938 A165939 A165940 * A165942 A165943 A165944

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 09:38 EST 2020. Contains 338639 sequences. (Running on oeis4.)