login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165908 Irregular triangle with the terms in the Staudt-Clausen theorem for the nonzero Bernoulli numbers multiplied by the product of the associated primes. 3
1, 2, -1, 6, -3, -2, 30, -15, -10, -6, 42, -21, -14, -6, 30, -15, -10, -6, 66, -33, -22, -6, 2730, -1365, -910, -546, -390, -210, 12, -3, -2, -3060, -255, -170, -102, -30, 44688, -399, -266, -114, -42 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The decomposition of a nonzero Bernoulli number in the Staudt-Clausen format is B(n) = A000146(n) - sum_k 1/A080092(n,k) with a set of primes A080092 characterising the right hand side.

If we multiply this equation by the product of the primes for a given n (which is in A002445), discard the left hand side, and list individually the terms associated with A000146 and each of the k, we get row n of the current triangle .

LINKS

Table of n, a(n) for n=0..40.

EXAMPLE

The decomposition of B_10 is 5/66 = 1-1/2-1/3-1/11. Multiplied by the product 2*3*11=66 of the denominators this becomes 5=66-33-22-6, and the 4 terms on the right hand side become one row of the table.

1;

2,-1;

6,-3,-2;

30,-15,-10,-6;

42,-21,-14,-6;

30,-15,-10,-6;

66,-33,-22,-6;

2730,-1365,-910,-546,-390,-210;

MAPLE

A165908 := proc(n) local i, p; Ld := [] ; pp := 1 ; for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then Ld := [op(Ld), -1/p] ; pp := pp*p ; elif p-1 > 2*n then break; end if; end do: Ld := [A000146(n), op(Ld)] ; [seq(op(i, Ld)*pp, i=1..nops(Ld))] ; end proc: # for n>=2, R. J. Mathar, Jul 08 2011

MATHEMATICA

a146[n_] := Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[2n]}] + BernoulliB[2n]; primes[n_] := Select[ Prime /@ Range[n+1], Divisible[2n, #-1]& ]; row[n_] := With[{pp = primes[n]}, Join[{a146[n]}, -1/pp]*Times @@ pp]; Join[{1}, Flatten[ Table[row[n], {n, 0, 9}]]] (* Jean-Fran├žois Alcover_, Aug 09 2012 *)

CROSSREFS

Cf. A000146, A165884, A006954 (first column).

Sequence in context: A094307 A097905 A094310 * A121281 A232467 A131449

Adjacent sequences:  A165905 A165906 A165907 * A165909 A165910 A165911

KEYWORD

tabf,sign

AUTHOR

Paul Curtz, Sep 30 2009

EXTENSIONS

Edited by R. J. Mathar, Jul 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 18:48 EST 2014. Contains 252365 sequences.