This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165896 a(n) = (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4) with four initial ones. 4
 1, 1, 1, 1, 6, 51, 3001, 9180001, 14050074147451, 3870680638643416483474006, 4992392071450646411005278674572370014340582601, 2715030052293379508289500941366397276374058263752394148988972928520177978202810359001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..15 S. Fomin, A. Zelevinsky, The Laurent Phenomenon, Adv. Appl. Math. 28 (2) (2002) 119-144. [R. J. Mathar, Oct 23 2009] Sergey Fomin, Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001. [R. J. Mathar, Oct 23 2009] FORMULA a(n) ~ 1/sqrt(10) * c^(t^n), where t = A058265 = 1.8392867552141611325518525646532866..., c = 1.2712241060822553131735186905646486868228186258439... . - Vaclav Kotesovec, May 06 2015 a(n) = 10*a(n-1)*a(n-2)*a(n-3)-a(n-1)-a(n-2)-a(n-3)-a(n-4). - Bruno Langlois, Aug 21 2016 MATHEMATICA RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2+a[n-2]^2+a[n-3]^2+ a[n-1]a[n-2]+ a[n-1]a[n-3]+a[n-2]a[n-3])/a[n-4]}, a, {n, 13}] (* Harvey P. Dale, May 21 2012 *) PROG (PARI) a(n)=if(n<4, 1, (a(n-1)^2+a(n-2)^2+a(n-3)^2+a(n-1)*a(n-2)+a(n-1)*a(n-3)+a(n-2)*a(n-3))/a(n-4)) CROSSREFS Cf. A006720, A165903. Sequence in context: A125803 A197073 A271680 * A080265 A292053 A202925 Adjacent sequences:  A165893 A165894 A165895 * A165897 A165898 A165899 KEYWORD nonn AUTHOR Jaume Oliver Lafont, Sep 29 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.