login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165783 a(n) = A002326(n-1) + A000120(A165781(n-1)). 1
2, 3, 6, 4, 9, 15, 18, 5, 12, 27, 8, 15, 30, 27, 42, 6, 15, 17, 54, 16, 30, 21, 17, 32, 31, 10, 78, 28, 27, 87, 90, 7, 18, 99, 33, 49, 12, 29, 45, 56, 81, 123, 10, 39, 15, 16, 13, 50, 72, 45, 150, 74, 16, 159, 54, 50, 42, 63, 15, 33, 165, 26, 150, 8, 21, 195, 26, 53, 102, 207 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Given a shift register : r(k)=r(k-1)+ X if r(k-1) is not divisible Y, else r(k)=r(k-1)/Y.

Gcd(r(0), X))=1, Gcd(X, Y)=1.

Then the length of the period orbit of such a register is L + digitsum (r(L)*(Y^L-1)/ X). Digitsum(z)in base X.

r(L) a point from period orbit, L minimal possible exponent such that (Y^L-1)/X)is a positive integer.

Number of period orbits is the order of the cyclic group connected to the register.

a(n) is the period length for Y=2, X=2*n-1, r(L)=1. [Ctibor O. Zizka, Nov 24 2009]

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = L + digitsum((2^L -1)/(2*n-1)). Digitsum(z)in base 2. [Ctibor O. Zizka, Nov 24 2009]

EXAMPLE

n=1, a(1)=1 + digitsum(1)= 2.

n=2, a(2)=2 + digitsum(1)=3.

n=3, a(3)= 4 + digitsum(3) = 6.

n=4, a(4)= 3 + digitsum(1)=4.

n=5, a(5)= 6 + digitsum(7)=9. [Ctibor O. Zizka, Nov 24 2009]

MAPLE

A002326 := proc(n) if n = 0 then 1; else numtheory[order](2, 2*n+1) ; end if ; end proc:

A165781 := proc(n) (2^A002326(n)-1)/(2*n+1) ; end proc:

read("transforms") ; A165783 := proc(n) A002326(n-1)+wt(A165781(n-1) ) ; end proc:

seq(A165783(n), n=1..80) ; # R. J. Mathar, Nov 26 2009

MATHEMATICA

Table[(b = MultiplicativeOrder[2, 2 n - 1]) + Plus @@ IntegerDigits[(2^b - 1)/(2 n - 1), 2], {n, 1, 70}] (* Ivan Neretin, May 09 2015 *)

PROG

(PARI) hamming(n)=my(v=binary(n)); sum(i=1, #v, v[i])

a(n)=my(x=2*n+1, m=znorder(Mod(2, x))); m+hamming((1<<m)\x)

CROSSREFS

Cf. A002326, A053446.

Sequence in context: A348395 A320123 A194357 * A354046 A289272 A073318

Adjacent sequences: A165780 A165781 A165782 * A165784 A165785 A165786

KEYWORD

easy,nonn

AUTHOR

Ctibor O. Zizka, Sep 26 2009

EXTENSIONS

Program and extension by Charles R Greathouse IV, Nov 24 2009

Definition corrected and comments merged by R. J. Mathar, Nov 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 06:50 EST 2022. Contains 358362 sequences. (Running on oeis4.)