

A165781


a(n) = (2^A002326(n)1)/(2*n+1).


7



1, 1, 3, 1, 7, 93, 315, 1, 15, 13797, 3, 89, 41943, 9709, 9256395, 1, 31, 117, 1857283155, 105, 25575, 381, 91, 178481, 42799, 5, 84973577874915, 19065, 4599, 4885260612740877, 18900352534538475, 1, 63, 1101298153654301589
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) = 1 <=> n is in A000225 <=> n = 2^k  1 with k = 0, 1, 2, ...  M. F. Hasler, Sep 20 2017


LINKS

Robert Israel, Table of n, a(n) for n = 0..1672


MAPLE

A002326 := proc(n) if n = 0 then 1 ; else numtheory[order](2, 2*n+1) ; end if ; end proc:
A165781 := proc(n) (2^A002326(n)1)/(2*n+1) ; end proc:
seq(A165781(n), n=0..60) ; # R. J. Mathar, Nov 16 2009


MATHEMATICA

a[n_] := (2^MultiplicativeOrder[2, 2n+1]1)/(2n+1);
a /@ Range[0, 40] (* JeanFrançois Alcover, Jun 04 2020 *)


PROG

(PARI) a(n)=(2^znorder(Mod(2, n=2*n+1))1)/n \\ M. F. Hasler, Sep 20 2017


CROSSREFS

Cf. A002326, A053446, A000225.
Sequence in context: A346784 A060487 A285020 * A152095 A096797 A084246
Adjacent sequences: A165778 A165779 A165780 * A165782 A165783 A165784


KEYWORD

easy,nonn


AUTHOR

Ctibor O. Zizka, Sep 26 2009


EXTENSIONS

Sign in definition and offset corrected by R. J. Mathar, Nov 16 2009


STATUS

approved



