login
a(n) = 1-2n.
7

%I #15 Jun 30 2023 14:24:21

%S 1,-1,-3,-5,-7,-9,-11,-13,-15,-17,-19,-21,-23,-25,-27,-29,-31,-33,-35,

%T -37,-39,-41,-43,-45,-47,-49,-51,-53,-55,-57,-59,-61,-63,-65,-67,-69,

%U -71,-73,-75,-77,-79,-81,-83,-85,-87,-89,-91,-93,-95,-97,-99,-101,-103

%N a(n) = 1-2n.

%H G. C. Greubel, <a href="/A165747/b165747.txt">Table of n, a(n) for n = 0..1000</a>

%H Ângela Mestre, José Agapito, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Mestre/mestre2.html">Square Matrices Generated by Sequences of Riordan Arrays</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).

%F a(n) = -A060747(n).

%F a(n) = 2*a(n-1) - a(n-2), a(0)= 1, a(1)= -1.

%F G.f.: (1-3x)/(1-x)^2.

%F a(n) = Sum_{k, 0<=k<=n} A112555(n,k)*(-2)^(n-k).

%F E.g.f.: (1-2*x)*exp(x). - _G. C. Greubel_, Apr 07 2016

%t Table[1 - 2 n, {n, 0, 100}] (* _G. C. Greubel_, Apr 07 2016 *)

%o (PARI) x='x+O('x^99); Vec((1-3*x)/(1-x)^2) \\ _Altug Alkan_, Apr 07 2016

%Y Cf. A060747

%K easy,sign

%O 0,3

%A _Philippe Deléham_, Sep 26 2009