OFFSET
0,1
COMMENTS
This is also the post-period decimal digit of ((n+2)^2-2)/5.
Serves also as the decimal expansion of 1495600/33333 and as the continued fraction representation of (33397+sqrt(12952802))/1649.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
FORMULA
a(n) = (2*n^2 + 8*n + 4) mod 10.
From Wesley Ivan Hurt, Sep 06 2014: (Start)
G.f.: 2*(2 + 2*x + 4*x^2 + 3*x^3 + 4*x^4)/(1-x^5). [corrected by Georg Fischer, May 11 2019]
Recurrence: a(n) = a(n-5).
a(n) = (2*A008865(n+1)) mod 10.
a(n) = (-A147973(n+4)) mod 10.
a(n+1) = 2*A053796(n) + 4. (End)
MAPLE
MATHEMATICA
Table[Mod[2 n^2 + 8 n + 4, 10], {n, 0, 100}] (* Wesley Ivan Hurt, Sep 06 2014 *)
CoefficientList[Series[2 (2 + 2 x + 4 x^2 + 3 x^3 + 4 x^4)/(1 - x^5), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 06 2014 *)
PROG
(Magma) [(2*n^2+8*n+4) mod 10 : n in [0..100]]; // Wesley Ivan Hurt, Sep 06 2014
(PARI) a(n)=[4, 4, 8, 6, 8][n%5+1] \\ Edward Jiang, Sep 06 2014
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Sep 24 2009
EXTENSIONS
Definition simplified, offset corrected by R. J. Mathar, Sep 25 2009
Name and offset changed by Wesley Ivan Hurt, Sep 06 2014
STATUS
approved