login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165559 Product of the arithmetic derivatives from 2 to n. 2
1, 1, 4, 4, 20, 20, 240, 1440, 10080, 10080, 161280, 161280, 1451520, 11612160, 371589120, 371589120, 7803371520, 7803371520, 187280916480, 1872809164800, 24346519142400, 24346519142400, 1071246842265600, 10712468422656000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

LINKS

Table of n, a(n) for n=2..25.

FORMULA

a(n) = Product_{k=2..n} A003415(k).

From Amiram Eldar, Nov 15 2020: (Start)

Sum_{n>=2} 1/a(n) = A190144.

Sum_{n>=2} (-1)^n/a(n) = A209873. (End)

MAPLE

P:= proc(p) local a, b, m, n, i, ok, pd, t1, t2, t3; a:=0; pd:=1;

for n from 2 by 1 to p do b:=1000000000039; ok:=0; if n<=1 then a:=0; ok:=1; fi; if isprime(n) then a:=1; ok:=1; fi; if ok=0 then t1:=ifactor(b*n); m:=nops(t1); t2:=0; for i from 1 to m do t3:=op(i, t1); if nops(t3)=1 then t2:=t2+1/op(t3); else t2:=t2+op(2, t3)/op(op(1, t3)); fi; od;

t2:=t2-1/b; a:=n*t2; fi; pd:=pd*a; print(pd); od; end: P(100);

# Alternative program A003415 := proc(n) local pfs ; if n <= 1 then 0 ; else pfs := ifactors(n)[2] ; n*add(op(2, p)/op(1, p), p=pfs) ; fi; end:

A165559 := proc(n) mul( A003415(k), k=2..n) ; end: seq( A165559(n), n=2..30) ; # R. J. Mathar, Sep 26 2009

MATHEMATICA

d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := Product[d[k], {k, 2, n}]; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Feb 21 2014 *)

CROSSREFS

Cf. A003415, A190144, A209873.

Sequence in context: A261568 A087213 A117857 * A180967 A231884 A052923

Adjacent sequences: A165556 A165557 A165558 * A165560 A165561 A165562

KEYWORD

easy,nonn

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Sep 22 2009

EXTENSIONS

Entries checked by R. J. Mathar, Sep 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)