login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165559 Product of the arithmetic derivatives from 2 to n. 2
1, 1, 4, 4, 20, 20, 240, 1440, 10080, 10080, 161280, 161280, 1451520, 11612160, 371589120, 371589120, 7803371520, 7803371520, 187280916480, 1872809164800, 24346519142400, 24346519142400, 1071246842265600, 10712468422656000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

LINKS

Table of n, a(n) for n=2..25.

FORMULA

a(n) = Product_{k=2..n} A003415(k).

MAPLE

P:= proc(p) local a, b, m, n, i, ok, pd, t1, t2, t3; a:=0; pd:=1;

for n from 2 by 1 to p do b:=1000000000039; ok:=0; if n<=1 then a:=0; ok:=1; fi; if isprime(n) then a:=1; ok:=1; fi; if ok=0 then t1:=ifactor(b*n); m:=nops(t1); t2:=0; for i from 1 to m do t3:=op(i, t1); if nops(t3)=1 then t2:=t2+1/op(t3); else t2:=t2+op(2, t3)/op(op(1, t3)); fi; od;

t2:=t2-1/b; a:=n*t2; fi; pd:=pd*a; print(pd); od; end: P(100);

# Alternative program A003415 := proc(n) local pfs ; if n <= 1 then 0 ; else pfs := ifactors(n)[2] ; n*add(op(2, p)/op(1, p), p=pfs) ; fi; end:

A165559 := proc(n) mul( A003415(k), k=2..n) ; end: seq( A165559(n), n=2..30) ; # R. J. Mathar, Sep 26 2009

MATHEMATICA

d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := Product[d[k], {k, 2, n}]; Table[a[n], {n, 2, 25}] (* Jean-Fran├žois Alcover, Feb 21 2014 *)

CROSSREFS

Cf. A003415.

Sequence in context: A261568 A087213 A117857 * A180967 A231884 A052923

Adjacent sequences:  A165556 A165557 A165558 * A165560 A165561 A165562

KEYWORD

easy,nonn

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Sep 22 2009

EXTENSIONS

Entries checked by R. J. Mathar, Sep 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 06:57 EST 2019. Contains 329784 sequences. (Running on oeis4.)