login
A165549
a(1) = 7; for n > 1, a(n) = smallest prime strictly greater than sum of previous terms.
1
7, 11, 19, 41, 79, 163, 331, 653, 1307, 2617, 5231, 10463, 20929, 41863, 83717, 167437, 334877, 669763, 1339523, 2679037, 5358083, 10716163, 21432317, 42864671, 85729367, 171458671, 342917357, 685834729, 1371669443, 2743338881
OFFSET
1,1
LINKS
MATHEMATICA
a=7; b=11; s=a+b; lst={a, b}; Do[i=1; While[ !PrimeQ[s+i], i++ ]; c=s+i; AppendTo[lst, c]; a=b; b=c; s+=c, {n, 2*4!}]; lst
nxt[{t_, a_}]:=Module[{c=NextPrime[t]}, {t+c, c}]; NestList[nxt, {7, 7}, 30][[All, 2]] (* Harvey P. Dale, Aug 03 2017 *)
PROG
(PARI) {m=30; s=0; v=vector(m); v[1]=7; for(n=2, m, s+=v[n-1]; v[n]=nextprime(s+1)); v} \\ Klaus Brockhaus, Sep 25 2009
CROSSREFS
Sequence in context: A133425 A103802 A038984 * A055939 A154555 A285016
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Klaus Brockhaus, Sep 25 2009
STATUS
approved