Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 02 2015 05:44:46
%S 1,1,2,6,22,89,382,1711,7922,37663,182936,904302,4535994,23034564,
%T 118209806,612165222,3195359360,16795435994,88825567814,472356139660,
%U 2524292893556,13549955878141,73026827854516,395017112175542,2143881709415478,11671226062503926
%N Number of permutations of length n which avoid the patterns 2341 and 3421.
%C These permutations have an enumeration scheme of depth 4.
%C G.f. is conjectured to be non-D-finite (see Albert et al link). - _Jay Pantone_, Oct 01 2015
%H Jay Pantone, <a href="/A165545/b165545.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, <a href="http://arxiv.org/abs/1510.00269">Generating Permutations with Restricted Containers</a>, arXiv:1510.00269 [math.CO], 2015.
%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
%H V. Vatter, <a href="http://www.math.ufl.edu/~vatter/publications/wilfplus/">Enumeration schemes for restricted permutations</a>, Combin., Prob. and Comput. 17 (2008), 137-159.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.
%e There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
%Y Cf. A053614, A106228, A165542, A165545, A257561, A257562.
%K nonn
%O 0,3
%A _Vincent Vatter_, Sep 21 2009
%E a(0)=1 prepended by _Jay Pantone_, Oct 01 2015