Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Nov 09 2016 18:33:10
%S 1,1,2,6,22,89,380,1677,7566,34676,160808,752608,3548325,16830544,
%T 80234659,384132724,1845829988,8897740300,43010084460,208409687323,
%U 1012046126532,4923952560917,23997719075657,117136530812812,572552052378494,2802078324448067
%N Number of permutations of length n which avoid the patterns 4231 and 4123.
%C G.f. conjectured to be non-D-finite (see Albert et al link). - _Jay Pantone_, Oct 01 2015
%H David Bevan, Jay Pantone, and Nathaniel Shar, <a href="/A165542/b165542.txt">Table of n, a(n) for n = 0..1000</a> (terms 1 through 40 by David Bevan, terms 41 through 70 by Nathaniel Shar)
%H Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, <a href="http://arxiv.org/abs/1510.00269">Generating Permutations with Restricted Containers</a>, arXiv:1510.00269 [math.CO], 2015.
%H C. Bean, M. Tannock and H. Ulfarsson, <a href="http://arxiv.org/abs/1512.08155">Pattern avoiding permutations and independent sets in graphs</a>, arXiv:1512.08155 [math.CO], 2015.
%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.
%e There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
%Y Cf. A053614, A106228, A165542, A165545, A257561, A257562.
%K nonn
%O 0,3
%A _Vincent Vatter_, Sep 21 2009
%E More terms from _David Bevan_, Feb 04 2014
%E a(0)=1 prepended by _Jay Pantone_, Oct 01 2015