Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 23 2023 08:34:19
%S 1,2,6,22,89,379,1664,7460,33977,156727,730619,3436710,16291842,
%T 77758962,373369867,1802399037,8742691627,42590945206,208300979739,
%U 1022385319050,5034470059883,24865173540949,123147075005750
%N Number of permutations of length n which avoid the patterns 4213 and 3142.
%H M. H. Albert, M. D. Atkinson, and V. Vatter, <a href="http://arxiv.org/abs/1209.0425">Inflations of geometric grid classes: three case studies</a>, arXiv:1209.0425 [math.CO], 2012.
%H Christian Bean, <a href="https://hdl.handle.net/20.500.11815/1184">Finding structure in permutation sets</a>, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.
%F G.f. f satisfies: x^3*f^6+(7*x^3-7*x^2+2*x)*f^5+(x^4+14*x^3-21*x^2+10*x-1)*f^4+(4*x^4+8*x^3-19*x^2+11*x-2)*f^3+(6*x^4-5*x^3-2*x^2+2*x)*f^2+(4*x^4-7*x^3+4*x^2-x)*f+x^4-2*x^3+x^2 = 0.
%e There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
%t f = 0; m = 24;
%t Do[f = -(1/(x(4x^3 - 7x^2 + 4x - 1)))(x^3 f^6 + x(7x^2 - 7x + 2) f^5 + (x^4 + 14x^3 - 21x^2 + 10x - 1) f^4 + (1 - 2x)^2 (x^2 + 3x - 2) f^3 + x(6 x^3 - 5x^2 - 2x + 2) f^2 + (x-1)^2 x^2) + O[x]^m, {m}];
%t CoefficientList[f/x, x] (* _Jean-François Alcover_, Feb 17 2019 *)
%K nonn
%O 1,2
%A _Vincent Vatter_, Sep 21 2009
%E Reference corrected by _Vincent Vatter_, Sep 04 2012