OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..682
Index entries for linear recurrences with constant coefficients, signature (28,28,28,28,28,28,28,28,-406).
FORMULA
G.f.: (t^9 +2*t^8 +2*t^7 +2*t^6 +2*t^5 +2*t^4 +2*t^3 +2*t^2 +2*t +1)/( 406*t^9 -28*t^8 -28*t^7 -28*t^6 -28*t^5 -28*t^4 -28*t^3 -28*t^2 -28*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 16 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), {t, 0, 20}], t] (* G. C. Greubel, Oct 21 2018 *)
coxG[{9, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)) \\ G. C. Greubel, Oct 21 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10) )); // G. C. Greubel, Oct 21 2018
(Sage)
def A165515_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)).list()
A165515_list(20) # G. C. Greubel, Sep 16 2019
(GAP) a:=[30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388395];; for n in [10..20] do a[n]:=28*Sum([1..8], j-> a[n-j]) -406*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved