OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..689
Index entries for linear recurrences with constant coefficients, signature (27,27,27,27,27,27,27,27,-378).
FORMULA
G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 16 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10), {t, 0, 20}], t] (* G. C. Greubel, Oct 21 2018 *)
coxG[{9, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10)) \\ G. C. Greubel, Oct 21 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10) )); // G. C. Greubel, Oct 21 2018
(Sage)
def A165512_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^9)/(1-28*t+405*t^9-378*t^10)).list()
A165512_list(20) # G. C. Greubel, Sep 16 2019
(GAP) a:=[29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951338];; for n in [10..20] do a[n]:=27*Sum([1..8], j-> a[n-j]) -378*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved