login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165491 a(0)=1, a(1)=6, a(n) = 30*a(n-2) - a(n-1). 2
1, 6, 24, 156, 564, 4116, 12804, 110676, 273444, 3046836, 5156484, 86248596, 68445924, 2519011956, -465634236, 76035992916, -90005019996, 2371084807476, -5071235407356, 76203779631636, -228340841852316, 2514454230801396 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)/a(n-1) tends to -6.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1, 30).

FORMULA

G.f.: (1+7*x)/(1+x-30*x^2).

a(n) = Sum_{k=0..n} A112555(n,k)*5^k.

a(n) = (12*5^n-(-6)^n)/11. - Klaus Brockhaus, Sep 26 2009

E.g.f.: (12*exp(5*x) - exp(-6*x))/11. - G. C. Greubel, Oct 20 2018

MAPLE

seq(coeff(series((1+7*x)/(1+x-30*x^2), x, n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 21 2018

MATHEMATICA

LinearRecurrence[{-1, 30}, {1, 6}, 30] (* Harvey P. Dale, May 04 2012 *)

PROG

(PARI) vector(30, n, n--; (12*5^n-(-6)^n)/11) \\ G. C. Greubel, Oct 20 2018

(MAGMA) [(12*5^n-(-6)^n)/11: n in [0..30]]; // G. C. Greubel, Oct 20 2018

(GAP) a:=[1, 6];; for n in [3..22] do a[n]:=30*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018

CROSSREFS

Sequence in context: A026947 A250743 A265883 * A165638 A122829 A232688

Adjacent sequences:  A165488 A165489 A165490 * A165492 A165493 A165494

KEYWORD

easy,sign

AUTHOR

Philippe Deléham, Sep 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 01:09 EST 2019. Contains 320364 sequences. (Running on oeis4.)