This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165491 a(0)=1, a(1)=6, a(n) = 30*a(n-2) - a(n-1). 2
 1, 6, 24, 156, 564, 4116, 12804, 110676, 273444, 3046836, 5156484, 86248596, 68445924, 2519011956, -465634236, 76035992916, -90005019996, 2371084807476, -5071235407356, 76203779631636, -228340841852316, 2514454230801396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/a(n-1) tends to -6. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-1, 30). FORMULA G.f.: (1+7*x)/(1+x-30*x^2). a(n) = Sum_{k=0..n} A112555(n,k)*5^k. a(n) = (12*5^n-(-6)^n)/11. - Klaus Brockhaus, Sep 26 2009 E.g.f.: (12*exp(5*x) - exp(-6*x))/11. - G. C. Greubel, Oct 20 2018 MAPLE seq(coeff(series((1+7*x)/(1+x-30*x^2), x, n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 21 2018 MATHEMATICA LinearRecurrence[{-1, 30}, {1, 6}, 30] (* Harvey P. Dale, May 04 2012 *) PROG (PARI) vector(30, n, n--; (12*5^n-(-6)^n)/11) \\ G. C. Greubel, Oct 20 2018 (MAGMA) [(12*5^n-(-6)^n)/11: n in [0..30]]; // G. C. Greubel, Oct 20 2018 (GAP) a:=[1, 6];; for n in [3..22] do a[n]:=30*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018 CROSSREFS Sequence in context: A026947 A250743 A265883 * A165638 A122829 A232688 Adjacent sequences:  A165488 A165489 A165490 * A165492 A165493 A165494 KEYWORD easy,sign AUTHOR Philippe Deléham, Sep 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 01:09 EST 2019. Contains 320364 sequences. (Running on oeis4.)