This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165471 Legendre symbol (n,65537). 10
 0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 65537 is the 4th Fermat prime, A019434(4). LINKS A. Karttunen, Table of n, a(n) for n = 0..65537 PROG (MIT Scheme, using fixnum-implementation of jacobi-symbol that works only up to 2^25-1 = 33554431): (define (A165471 n) (legendre-symbol n 65537)) (define legendre-symbol jacobi-symbol) (define jacobi-symbol fix:jacobi-symbol) (define (fix:jacobi-symbol p q) (if (not (and (fix:fixnum? p) (fix:fixnum? q) (fix:= 1 (fix:and q 1)))) (error "fix:jacobi-symbol: args must be fixnums, and 2. arg should be odd: " p q) (let loop ((p p) (q q) (s 0)) (cond ((fix:zero? p) 0) ((fix:= 1 p) (fix:- 1 (fix:and s 2))) ((fix:= 1 (fix:and p 1)) (loop (fix:remainder q p) p (fix:xor s (fix:and p q)))) (else (loop (fix:lsh p -1) q (fix:xor s (fix:xor q (fix:lsh q -1))))))))) (PARI) a(n)=kronecker(n, 65537) \\ Charles R Greathouse IV, Oct 31 2011 (Sage) def A165471(n): return legendre_symbol(n, 65537) [A165471(n) for n in range(82)]  # Peter Luschny, Aug 09 2012 CROSSREFS Partial sums: A165472. Sequence in context: A165591 * A165481 A165573 A057428 A165574 A165581 Adjacent sequences:  A165468 A165469 A165470 * A165472 A165473 A165474 KEYWORD sign,mult,easy AUTHOR Antti Karttunen, Sep 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 00:52 EDT 2018. Contains 313902 sequences. (Running on oeis4.)