login
a(n) = (A165463(n)-3)/4.
6

%I #6 Mar 09 2014 04:53:53

%S 118,193,211,232,379,493,568,574,673,868,925,943,1243,1261,1300,1318,

%T 1372,1408,1471,1618,1693,1702,1816,1993,2068,2290,2323,2368,2389,

%U 2395,2437,2443,2512,2731,2743,2797,2818,2968,3106,3118,3193,3235

%N a(n) = (A165463(n)-3)/4.

%C Conjecture: These are all those terms of A165602 which = 1 modulo 3. If this is true, then A165461 gives also the positions of zeros in A165605. - _Antti Karttunen_, Oct 05 2009

%H A. Karttunen, <a href="/A165462/b165462.txt">Table of n, a(n) for n = 0..1000</a>

%Y Cf. A165461-A165463. See also the conjecture in A165460.

%K nonn

%O 0,1

%A _Antti Karttunen_, Oct 06 2009