login
A165421
a(1) = 1, a(2) = 3, a(n) = product of the previous terms for n >= 3.
5
1, 3, 3, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
OFFSET
1,2
COMMENTS
Essentially a duplicate of A011764. - N. J. A. Sloane, Oct 06 2009
LINKS
FORMULA
a(1) = 1, a(2) = 3, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 3, a(n) = A000244(2^(n-3)) = A011764(n-3) = 3^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = (a(n-1))^2, n >= 4.
MATHEMATICA
a[1]:= 1; a[2]:= 3; a[n_]:= Product[a[j], {j, 1, n-1}]; Table[a[n], {n, 1, 12}] (* G. C. Greubel, Oct 19 2018 *)
nxt[{prd_, a_}]:=Module[{c=prd*a}, {c, prd*a}]; Join[{1, 3}, Rest[ NestList[ nxt, {1, 3}, 10][[All, 1]]]] (* Harvey P. Dale, Jan 31 2022 *)
PROG
(PARI) {a(n) = if(n==1, 1, if(n==2, 3, prod(j=1, n-1, a(j))))};
for(n=1, 10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018
CROSSREFS
Sequence in context: A257627 A115564 A122961 * A227432 A100731 A072004
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 17 2009
STATUS
approved