This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165367 Trisection a(n) = A026741(3n + 2). 7
 1, 5, 4, 11, 7, 17, 10, 23, 13, 29, 16, 35, 19, 41, 22, 47, 25, 53, 28, 59, 31, 65, 34, 71, 37, 77, 40, 83, 43, 89, 46, 95, 49, 101, 52, 107, 55, 113, 58, 119, 61, 125, 64, 131, 67, 137, 70, 143, 73, 149, 76, 155, 79, 161, 82, 167, 85, 173, 88, 179, 91, 185, 94, 191, 97, 197 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The other trisections are A165351 and A165355. LINKS John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399, 2011. Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1) FORMULA a(n)*A022998(n) = A045944(n). a(n)*A026741(n+1) = A000326(n+1). a(2n) = A016777(n); a(2n+1) = A016969(n). From R. J. Mathar Nov 22 2009: (Start) a(n) = 2*a(n-2) - a(n-4). G.f.: (1 + 5*x + 2*x^2 + x^3)/((1-x)^2*(1+x)^2). (End) MAPLE A026741 := proc(n) if type(n, 'odd') then n; else n/2 ; fi; end: A165367 := proc(n) A026741(3*n+2) ; end: seq(A165367(n), n=0..100) ; # R. J. Mathar, Nov 22 2009 MATHEMATICA LinearRecurrence[{0, 2, 0, -1}, {1, 5, 4, 11}, 66] (* Jean-François Alcover, Nov 15 2017 *) CROSSREFS Sequence in context: A089520 A163524 A051552 * A166549 A232894 A262902 Adjacent sequences:  A165364 A165365 A165366 * A165368 A165369 A165370 KEYWORD nonn,easy AUTHOR Paul Curtz, Sep 17 2009 EXTENSIONS All comments rewritten as formulas by R. J. Mathar, Nov 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)