This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165328 The number of even separable permutations of length n 0

%I

%S 1,1,3,12,48,197,903,4298,20862,103049,518859,2647296,13651092,

%T 71039373,372693519,1968822294,10463661690,55909013009,300159426963,

%U 1618362990804,8759313066840,47574827600981,259215937709463

%N The number of even separable permutations of length n

%C For n congruent to 2 or 3 mod 4, these are the little Schroeder numbers A001003, because the separable permutations are closed under reversal, and for these values of n, reversing the permutation corresponds to multiplying by an odd permutation. Thus for these values of n, precisely half of the separable permutations are even. For other values of n, it appears that strictly more than half of the separable permutations are even.

%H M. Albert, M. D. Atkinson, and V. Vatter, <a href="http://turnbull.mcs.st-and.ac.uk/~vince/publications/simple-enum/examples/even-sep.html">Even separable permutations</a>

%F G.f. f satisfies 4096*f^12 + (- 24576 + 24576*x)*f^11 + (- 116736*x + 65536 + 65536*x^2)*f^10 + (- 102400 + 235520*x + 102400*x^3 - 235520*x^2)*f^9 + (104000*x^4 - 259584*x + 327040*x^2 + 103744 - 259584*x^3)*f^8 + (163072*x - 70912 - 196096*x^2 + 196096*x^3 + 71936*x^5 - 164096*x^4)*f^7 + (34464*x^6 - 52288*x^5 + 27520*x^3 + 5600*x^2 - 48704*x + 7296*x^4 + 32640)*f^6 + (- 5952*x + 63776*x^2 + 480*x^6 - 9472 - 58688*x^5 + 11360*x^7 - 115040*x^3 + 113536*x^4)*f^5 + (7312*x^7 - 34528*x^6 + 2484*x^8 + 59440*x^3 - 40248*x^2 + 56496*x^5 - 63284*x^4 + 1272 + 11792*x)*f^4 +

%F + (- 7344*x^3 + 10800*x^2 - 4848*x - 472*x^4 + 328*x^9 + 2904*x^8 + 152*x^5 + 6656*x^6 - 8320*x^7 + 144)*f^3 + (- 429*x^2 + 882*x + 528*x^9 - 554*x^8 - 2632*x^7 + 20*x^10 - 11750*x^5 + 10471*x^4 - 4484*x^3 + 8045*x^6 - 81)*f^2 + (40*x^10 + 122*x^9 + 9 + 1961*x^7 - 3087*x^6 + 4129*x^5 - 874*x^8 + 2247*x^3 - 513*x^2 - 27*x - 4007*x^4)*f - 351*x^3 - 9*x + 99*x^2 + 615*x^4 - 78*x^9 - 603*x^5 + 361*x^6 - 183*x^7 + 130*x^8 + 20*x^10 = 0.

%e For n=4 there are 22 separable permutations, and 12 of these are even. Thus a(4)=12.

%Y Cf. A001003

%K nonn

%O 1,3

%A _Vincent Vatter_, Sep 15 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 14:52 EDT 2019. Contains 324213 sequences. (Running on oeis4.)