login
A165298
Numbers k with property that 14*k is a sum of two consecutive primes.
1
3, 6, 8, 15, 22, 31, 33, 38, 45, 57, 60, 63, 66, 69, 76, 80, 82, 102, 123, 126, 132, 140, 141, 142, 148, 150, 154, 156, 158, 159, 160, 168, 170, 171, 183, 186, 192, 204, 207, 208, 213, 215, 225, 232, 245, 246, 250, 255, 258, 261, 267, 272, 276, 285, 294, 303
OFFSET
1,1
COMMENTS
Minimal difference d=p2-p1 is 2 while d may be arbitrarily large.
For n<10^7 largest d is for n=2435971: 14*n=34103594, p1=17051707, p2=17051887, d=p2-p1=180.
Numbers k such that 7*k is in A145025. - Robert Israel, Jun 17 2019
LINKS
EXAMPLE
3*14=42=19+23,d=4; 6*14=84=41+43,d=2; 8*14=112=53+59,d=6.
MAPLE
filter:= proc(n) local t;
nextprime(7*n)+prevprime(7*n)=14*n;
end proc:
select(filter, [$1..1000]); # Robert Israel, Jun 17 2019
CROSSREFS
Cf. A145025.
Sequence in context: A246141 A051212 A143869 * A352507 A117148 A376480
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 14 2009
STATUS
approved