%I #12 Apr 13 2019 22:13:24
%S 5,7,5,3,7,3,5,1,7,5,3,7,5,1,7,5,1,7,3,1,5,5,1,7,3,3,1,3,3,5,3,7,5,3,
%T 3,5,1,3,7,5,1,7,7,3,7,1,5,5,3,1,1,5,5,3,3,5,1,7,5,7,7,5,3,1,1,3,7,7,
%U 5,7,5,7,7,1,3,1,1,3,7,3,3,1,1,1,5,3,5,3,1,5,7,7,5,1,5,7,7,1,1,7,5,7,3,3,5
%N The larger member of the n-th twin prime pair, modulo 8.
%C Related to the rank of some elliptic curves by the conjecture on page 2 of [Hatley]:
%C Let E_p be the elliptic curve defined by y^2 = x(x-p)(x-2) where p and p-2 are twin primes.
%C Then Rank(E_p) = 0 if p == 7 (mod 8), 1 if p == 3,5 (mod 8), 2 if p == 1 (mod 8).
%D Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.
%H Jeffrey Hatley, <a href="http://arxiv.org/abs/0909.1614">On the Rank of the Elliptic Curve y^2=x(x-p)(x-2)</a>, arXiv:0909.1614 [math.NT], 2009.
%F a(n) = A010877(A006512(n)).
%p A006512 := proc(n) if n = 1 then 5; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a-2) then RETURN(a) ; fi; od: fi; end:
%p A165242 := proc(n) A006512(n) mod 8 ; end: seq(A165242(n),n=1..120) ; # _R. J. Mathar_, Sep 16 2009
%t Mod[#,8]&/@(Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==2&][[All,2]]) (* _Harvey P. Dale_, Sep 26 2016 *)
%Y Cf. A000040, A001359, A010877.
%K easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Sep 09 2009
%E Redefined for the larger member of twin primes by _R. J. Mathar_, Sep 16 2009