The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165238 Hypotenuses c of primitive Pythagorean Triples (a,b,c) such that 2*a+1, 2*b+1 and 2*c+1 are primes. 2
 29, 65, 293, 485, 785, 1049, 1469, 1961, 2105, 3005, 3725, 3821, 4145, 4181, 4685, 4745, 5105, 5501, 6053, 6929, 6953, 7121, 7361, 7841, 8693, 9029, 9125, 10025, 12041, 12833, 12965, 13649, 14285, 14909, 15173, 15689, 15773, 15821, 16493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Only one copy of c enters the sequence if multiple solutions exist, like with (a,b,c) = (3164,12573,12965) and (a,b,c) = (483,12956,12965). Subsequence of A020882. [R. J. Mathar, Mar 25 2010] LINKS Eric Weisstein, Pythagorean Triple, MathWorld EXAMPLE (a,b,c) = (20,21,29), (33,56,65), (44,483,485), (56,783,785), (68,285,293), (273,4136,4145). In the first case, for example, 2*20+1=41, 2*21+1 and 2*29+1 are all prime, which adds the half-hypotenuse 29 to the sequence. MATHEMATICA amax=6*10^4; lst={}; k=0; q=12!; Do[If[(e=((n+1)^2-n^2))>amax, Break[]]; Do[If[GCD[m, n]==1, a=m^2-n^2; If[PrimeQ[2*a+1], b=2*m*n; If[PrimeQ[2*b+1], If[GCD[a, b]==1, If[a>b, {a, b}={b, a}]; If[a>amax, Break[]]; c=m^2+n^2; If[PrimeQ[2*c+1], k++; AppendTo[lst, c]]]]]]; If[a>amax, Break[]], {m, n+1, 12!, 2}], {n, 1, q, 1}]; Union@lst CROSSREFS Cf. A020882, A020883, A165236, A165237 Sequence in context: A044131 A044512 A211492 * A201022 A118481 A245744 Adjacent sequences:  A165235 A165236 A165237 * A165239 A165240 A165241 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Sep 09 2009 EXTENSIONS Comments moved to examples and definition clarified by R. J. Mathar, Mar 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 12:58 EST 2020. Contains 331321 sequences. (Running on oeis4.)