This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165197 Smallest integers whose binary digits "1" define a polyomino if sorted into a quadrant shape. 2
 1, 3, 7, 11, 15, 23, 27, 30, 31, 47, 62, 63, 75, 79, 91, 94, 95, 111, 126, 127, 143, 159, 175, 181, 182, 183, 188, 189, 190, 191, 207, 219, 220, 221, 222, 223, 239, 252, 253, 254, 255, 347, 350, 351, 367, 378, 379, 382, 383, 406, 407, 413, 415, 431, 443, 446 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each integer k can be mapped onto a black-and-white checkerboard pattern if we read the digits of its binary representation into the diagonals of a quadrant form, the least-significant digit b(0) into the corner, taking 1, then 2, then 3 etc. digits to fill consecutive diagonals of the quadrant: b(0) b(2) b(5) b(9) .. b(1) b(4) b(8) .. b(3) b(7) .. b(6) .. b(10) This will leave one last diagonal partially filled unless the number of binary digits in k is a triangular number. Replace the "1" bits by black unit squares and the "0" or unset bits by white squares. If the black squares define a singly connected polyomino considering position and up-down-left-right connectivity, and if the same polyomino cannot be created by a number smaller than k, we add k to the sequence. Polyominoes are considered the same if they can be matched by translations, rotations or flips. LINKS EXAMPLE (i) The triangular representations of 3= 11, 5 = 101, 10=1010 and are 1 1 and 11 0 and 00 1 1 The 1's define the same 2-omino in all 3 cases, so only the smallest representative, the 3, enters the sequence. (ii) For k =181 = 10110101 the quadrant is filled with 111 01 01 0 No smaller number leads with this method to this T-shaped 5-omino, so 181 enters the sequence. (iii) the representations of 6=110, 9= 1001 and 29 =11101 are 01 1 and 10 0 1 and 11 01 1 In all of these 3 cases, the 1's are not singly connected and do not represent polyominoes, so neither 6 nor 9 nor 29 can make it into the sequence. CROSSREFS Sequence in context: A163094 A022800 A071849 * A246559 A246521 A160785 Adjacent sequences:  A165194 A165195 A165196 * A165198 A165199 A165200 KEYWORD nonn,base AUTHOR Leonhard Kreissig, Sep 06 2009 EXTENSIONS Explanation expanded - R. J. Mathar, Sep 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 03:06 EST 2019. Contains 320364 sequences. (Running on oeis4.)